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Binary Relations
Definition: A binary relation R from a set A to a set B
is a subset R ⊆ A × B.

Example:

 Let A = {0,1,2} and B = {a,b} 

 {(0, a), (0, b), (1,a) , (2, b)} is a relation from A to B. 

 We can represent relations from a set A to a set B
graphically or using a table:

Relations are more general than 
functions. A function is a relation 
where exactly one element of B is 
related to each element of A.



Binary Relation on a Set

Definition: A binary relation R on a set A is a subset 
of A × A or a relation from A to A.

Example:

 Suppose that A = {a,b,c}. Then R = {(a,a),(a,b), (a,c)} is 
a relation on A. 

 Let  A = {1, 2, 3, 4}. The ordered pairs in the relation                  
R = {(a,b) | a divides b} are

(1,1), (1, 2), (1,3), (1, 4), (2, 2), (2, 4), (3, 3), and  (4, 4).



Binary Relation on a Set (cont.)
Question: How many relations are there on a set A?

Solution:  Because a relation on A is the same thing as a 
subset of A ⨉ A, we count the subsets of A × A. Since            
A × A has n2 elements when A has n elements, and a set 
with m elements has 2m subsets, there are         subsets of  
A × A. Therefore,  there are        relations on a set A.

2| |2 A

2| |2 A



Binary Relations on a Set (cont.)
Example: Consider these relations on the set of integers:

R1 = {(a,b) | a ≤ b}, R4 = {(a,b) | a = b},
R2 = {(a,b) | a > b}, R5 = {(a,b) | a = b + 1},
R3 = {(a,b) | a = b  or a = −b},        R6 = {(a,b) | a + b ≤ 3}.

Which of these relations contain each of the pairs

(1,1), (1, 2), (2, 1), (1, −1), and (2, 2)?

Solution: Checking the conditions that define each relation, we see 
that the pair (1,1) is in R1, R3, R4 , and R6: (1,2) is in R1 and R6: (2,1) is in
R2, R5, and R6: (1, −1) is in R2, R3, and R6 : (2,2) is in R1, R3, and R4.

Note that these relations are on an infinite set and each of these relations is an 
infinite set.



Reflexive Relations
Definition: R is reflexive iff (a,a) ∊ R for every element       
a ∊ A. Written symbolically, R is reflexive if and only if 

∀x[x∊U ⟶ (x,x) ∊ R]
Example: The following relations  on the integers are 
reflexive:
R1 = {(a,b) | a ≤ b},
R3 = {(a,b) | a = b  or a = −b},
R4 = {(a,b) | a = b}.
The following relations are not reflexive:
R2 = {(a,b) | a > b}  (note that  3 ≯ 3),
R5 = {(a,b) | a = b + 1} (note that  3 ≠3 + 1),
R6 = {(a,b) | a + b ≤ 3}  (note that 4  + 4 ≰ 3).

If A = ∅ then the empty relation is 
reflexive vacuously. That is the empty 
relation on an empty set is reflexive! 



Symmetric Relations
Definition: R is symmetric iff (b,a) ∊ R whenever (a,b) ∊ R 
for all a,b ∊ A. Written symbolically, R is symmetric if and 
only if 

∀x∀y [(x,y) ∊R ⟶ (y,x) ∊ R]

Example: The following relations  on the integers are 
symmetric:
R3 = {(a,b) | a = b  or a = −b},
R4 = {(a,b) | a = b},
R6 = {(a,b) | a + b ≤ 3}.
The following are not symmetric:
R1 = {(a,b) | a ≤ b} (note that 3 ≤ 4, but 4 ≰ 3),
R2 = {(a,b) | a > b}  (note that 4 > 3, but 3 ≯ 4),
R5 = {(a,b) | a = b + 1} (note that 4 = 3 + 1, but 3 ≠4 + 1).



Antisymmetric Relations
Definition:A relation R on a set A such that for all a,b ∊ A if 
(a,b) ∊ R and (b,a) ∊ R, then a = b  is called antisymmetric. 
Written symbolically, R is antisymmetric if and only if 

∀x∀y [(x,y) ∊R ∧ (y,x) ∊ R ⟶ x = y]

 Example: The following relations  on the integers are 
antisymmetric:
R1 = {(a,b) | a ≤ b},
R2 = {(a,b) | a > b},
R4 = {(a,b) | a = b},
R5 = {(a,b) | a = b + 1}.
The following relations are not antisymmetric:
R3 = {(a,b) | a = b  or a = −b} 

(note that both (1,−1) and (−1,1) belong to R3),
R6 = {(a,b) | a + b ≤ 3} (note that both (1,2) and (2,1) belong to R6).

For any integer, if a a ≤ b and 
a ≤ b , then a = b. 



Transitive Relations
Definition: A relation R on a set A is called transitive if 
whenever (a,b) ∊ R and (b,c) ∊ R, then (a,c) ∊ R, for all a,b,c ∊ A. 
Written symbolically, R is transitive if and only if 

∀x∀y ∀z[(x,y) ∊R ∧ (y,z) ∊ R ⟶ (x,z) ∊ R ]

 Example: The following relations  on the integers are transitive:
R1 = {(a,b) | a ≤ b},
R2 = {(a,b) | a > b},
R3 = {(a,b) | a = b  or a = −b},
R4 = {(a,b) | a = b}.
The following are not transitive:
R5 = {(a,b) | a = b + 1} (note that both (3,2) and (4,3) belong to R5, 

but not (3,3)),
R6 = {(a,b) | a + b ≤ 3} (note that both (2,1) and (1,2) belong to R6, but 

not (2,2)).

For every integer, a ≤ b 
and b ≤ c, then b ≤ c. 



Combining Relations
 Given two relations R1 and R2, we can combine them 

using basic set operations to form new relations such 
as R1 ∪ R2, R1 ∩ R2, R1 − R2, and R2 − R1.

 Example: Let A = {1,2,3} and B = {1,2,3,4}. The 
relations R1 = {(1,1),(2,2),(3,3)} and                              
R2 = {(1,1),(1,2),(1,3),(1,4)} can be combined using 
basic set operations to form new relations:

R1 ∪ R2 ={(1,1),(1,2),(1,3),(1,4),(2,2),(3,3)} 

R1 ∩ R2 ={(1,1)} R1 − R2 ={(2,2),(3,3)} 

R2 − R1 ={(1,2),(1,3),(1,4)} 



Composition
Definition: Suppose

 R1 is a relation from a set A to a set B.

 R2 is a relation from B to a set C.

Then the composition (or composite) of R2 with R1, is a 
relation from A to C where

 if (x,y) is a member of R1 and (y,z) is a member of R2,
then (x,z) is a member of R2∘ R1.
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Representing Relations Using 
Matrices
 A relation between finite sets can be represented using a 

zero-one matrix. 
 Suppose R is a relation from A = {a1, a2, …, am} to                         

B = {b1, b2, …, bn}.
 The elements of the two sets can be listed in any particular 

arbitrary order. When A = B, we use the same ordering. 

 The relation R is represented by the matrix                                         
MR = [mij], where

 The matrix representing R has a 1 as its (i,j) entry when ai
is related to bj and a 0 if  ai is not related to bj. 



Examples of Representing 
Relations Using Matrices

Example 1: Suppose that A = {1,2,3} and B = {1,2}. Let  
R be  the relation from A to B containing (a,b) if a ∈ A,    
b ∈ B, and a > b. What is the matrix representing R 
(assuming the ordering of elements is the same as the 
increasing numerical order)?

Solution: Because R = {(2,1), (3,1),(3,2)}, the matrix is



Examples of Representing 
Relations Using Matrices (cont.)

Example 2: Let A = {a1,a2, a3} and B = {b1,b2, b3,b4, b5}. 
Which ordered pairs are in the relation R represented 
by the matrix

Solution: Because R consists of those ordered pairs 
(ai,bj) with mij = 1, it follows that:

R = {(a1, b2), (a2, b1),(a2, b3), (a2, b4),(a3, b1), {(a3, b3), (a3, b5)}. 



Matrices of Relations on Sets
 If R is a reflexive relation, all the elements on the main 

diagonal of MR are equal to 1.

 R is a symmetric relation, if and only if mij = 1 
whenever mji = 1. R is an antisymmetric relation, if 
and only if mij = 0  or mji = 0 when  i≠ j. 



Example of a Relation on a Set
Example 3: Suppose that the relation R on a set is 
represented by the matrix

Is R reflexive, symmetric, and/or antisymmetric?

Solution: Because all the diagonal elements are equal 
to 1, R is reflexive. Because MR is symmetric, R is 
symmetric and not antisymmetric because both m1,2

and m2,1 are 1. 



Representing Relations Using 
Digraphs

Definition: A directed graph, or digraph, consists of a set V of vertices
(or nodes) together with a set E of ordered pairs of elements of V called 
edges (or arcs). The vertex a is called the initial vertex of the edge (a,b), 
and the vertex b is called the terminal vertex of this edge.
 An edge of the form (a,a) is called a loop.  

Example 7:  A drawing of the directed graph with vertices a, b, c, and d, 
and edges   (a, b), (a, d), (b, b), (b, d), (c, a), (c, b), and (d, b) is shown 
here.



Examples of Digraphs Representing 
Relations

Example 8: What are the ordered pairs in the relation 

represented by this directed graph?

Solution: The ordered pairs in the relation are

(1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 1), (3, 3),        
(4, 1),  and (4, 3)



Determining which Properties a 
Relation has from its Digraph

 Reflexivity: A loop must be present at all vertices in the 
graph.

 Symmetry: If (x,y) is an edge, then so is (y,x).

 Antisymmetry: If (x,y) with x ≠ y is an edge, then (y,x) 
is not an edge. 

 Transitivity: If (x,y) and (y,z) are edges, then so is (x,z). 



• Reflexive? No, not every vertex has a loop
• Symmetric? Yes  (trivially), there is no edge from  one vertex to another
• Antisymmetric? Yes  (trivially), there is no edge from one vertex

to another
• Transitive? Yes, (trivially) since there is no edge from one vertex to another

a

dc

b

Determining which Properties a Relation 
has from its Digraph – Example 1



• Reflexive? No, there are no loops
• Symmetric? No, there is an edge from a to b, but not from b to a
• Antisymmetric? No, there is an edge from d to b and b to d
• Transitive? No, there are edges from a to c and from c to b, 

but  there is no edge from a to d

a
b

c d

Determining which Properties a Relation 
has from its Digraph – Example 2



Reflexive? No, there are no loops
Symmetric? No, for example, there is no edge from c to a
Antisymmetric? Yes, whenever there is an edge from one

vertex  to another, there is not one going back  
Transitive? No, there is no edge from a to b

a

dc

b

Determining which Properties a Relation 
has from its Digraph – Example 3



• Reflexive? No, there are no loops
• Symmetric? No, for example, there is no edge from d to a
• Antisymmetric? Yes, whenever there is an edge from one vertex

to another, there is not one going back  
• Transitive? Yes (trivially), there  are no two edges where the first

edge ends at the vertex where the second edge begins

a

dc

b

Determining which Properties a Relation 
has from its Digraph – Example 4



Example of the Powers of a Relation

a b

cd
R

a b

cd
R2

a b

cd R3

a b

cd
R4

The pair (x,y) is in  Rn if there is a path of length n from x to y in R
(following the direction of the arrows). 
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Equivalence Relations
Definition 1:  A relation on a set A is called an 
equivalence relation if it is reflexive, symmetric, and 
transitive. 

Definition 2:  Two elements a, and b that are related 
by an equivalence relation are called  equivalent.  The 
notation a ∼ b is often used to denote that a and b are 
equivalent elements with respect to a particular 
equivalence relation.



Strings
Example: Suppose that R is the relation on the set of strings of English 
letters such that aRb if and only if l(a) = l(b), where l(x) is the length of the 
string x. Is R an equivalence relation? 

Solution: Show that all of the properties of an equivalence relation hold.
 Reflexivity: Because l(a) = l(a), it follows that aRa for all strings a. 
 Symmetry: Suppose that aRb. Since l(a) = l(b), l(b) = l(a) also holds  

and bRa. 
 Transitivity: Suppose that aRb and bRc. Since l(a) = l(b),and l(b) = l(c), 

l(a) = l(a) also holds and aRc. 



Congruence Modulo m
Example:  Let m be an integer with m > 1. Show that the relation 

R = {(a,b) | a ≡ b (mod m)} 
is an equivalence relation on the set of integers.

Solution:  Recall that a ≡ b (mod m) if and only if m divides a − b.
 Reflexivity:  a ≡ a (mod m) since a − a = 0 is divisible by m since              

0 = 0 ∙ m.
 Symmetry:  Suppose that a ≡ b (mod m). Then a − b is divisible by m, 

and so a − b = km, where k is an integer. It follows that b − a = (− k) m, 
so b ≡ a (mod m). 

 Transitivity: Suppose that a ≡ b (mod m) and b ≡ c (mod m). Then m
divides both a − b and b − c. Hence, there are integers k and l with          
a − b = km  and b − c = lm. We obtain by adding the equations: 

a − c = (a − b) + (b − c)  = km + lm = (k + l) m.
Therefore, a ≡ c (mod m).



Divides
Example:  Show that the “divides” relation on the set of positive 
integers is not an equivalence relation.
Solution: The properties of reflexivity, and transitivity do hold, 
but there relation is not transitive. Hence, “divides” is not an 
equivalence relation.
 Reflexivity:  a ∣ a for all a. 
 Not Symmetric: For example, 2 ∣ 4, but 4 ∤ 2. Hence, the relation is 

not symmetric. 
 Transitivity:  Suppose that a divides b and b divides c. Then there 

are positive integers k and l such that b = ak and c = bl. Hence, c = 
a(kl), so a divides c. Therefore, the relation is transitive. 



Equivalence Classes
Definition 3:  Let R be an equivalence relation on a set A. The set of all 
elements that are related to an element a of A is called the  equivalence class of 
a. The equivalence class of a with respect to R is denoted by [a]R.  
When only one relation is under consideration, we can write [a], without the 
subscript R,  for this equivalence class. 

Note that  [a]R = {s|(a,s) ∈ R}.

 If b ∈ [a]R, then b is called a representative of this equivalence class. Any 
element of a class can be used as a representative of the class. 

 The equivalence classes of the relation congruence modulo m are called the 
congruence classes modulo m. The congruence class of an integer a modulo m 
is denoted by [a]m, so [a]m = {…, a−2m, a−m, a+2m, a+2m, … }. For example, 

[0]4 = {…, −8, −4 , 0, 4 , 8 , …}                        [1]4 = {…, −7, −3 , 1, 5 , 9 , …}

[2]4 = {…, −6, −2 , 2, 6 , 10 , …}                      [3]4 = {…, −5, −1 , 3, 7 , 11 , …}



Equivalence Classes and Partitions
Theorem  1:  let R be an equivalence relation on a set A. 
These statements for elements a and b of A are equivalent: 

(i)   aRb

(ii)  [a] = [b]

(iii) [a] ∩ [b] = ∅

Proof: We show that (i) implies (ii). Assume that aRb. Now 
suppose that c ∈ [a]. Then aRc. Because aRb and R is 
symmetric, bRa. Because R is transitive and bRa and aRc, it 
follows that bRc. Hence, c ∈ [b]. Therefore, [a]⊆ [b].  A similar 
argument (omitted here) shows that [b]⊆ [a]. Since [a]⊆ [b] 
and [b]⊆ [a],  we have shown that [a] = [b].

(see text for proof  that (ii) implies (iii) and (iii) implies (i))



Partition of a Set
Definition: A partition of a set S is a collection of 
disjoint nonempty subsets of S that have S as their 
union. In other words, the collection of subsets Ai, 
where i ∈ I (where I is an index set), forms a partition 
of S if and only if

 Ai ≠ ∅ for i ∈ I,

 Ai ∩ Aj=∅ when i ≠ j,

 and

A Partition of a Set



An Equivalence Relation Partitions 
a Set
 Let R be an equivalence relation on a set A.  The union 

of all the equivalence classes of R is all of A, since  an 
element a of A is in its own equivalence class [a]R.  In 
other words, 

 From Theorem 1, it follows that these equivalence 
classes are either equal or disjoint, so [a]R ∩[b]R=∅ 
when [a]R ≠ [b]R.

 Therefore, the equivalence classes form a partition of 
A, because they split A into disjoint subsets. 



An Equivalence Relation Partitions 
a Set (continued)

Theorem 2: Let R be an equivalence relation on a set S.  Then the equivalence 
classes of R form a partition of S. Conversely, given a partition {Ai | i ∈ I} of the 
set S, there is an equivalence relation R that has the sets Ai, i ∈ I, as its 
equivalence classes. 

Proof: We have already shown the first part of the theorem.
For the second part, assume that {Ai | i ∈ I} is a partition of S. Let R be the 
relation on S consisting of the pairs (x, y) where x and y belong to the same 
subset Ai in the partition. We must show that R satisfies the properties of an 
equivalence relation.
 Reflexivity: For every a ∈ S, (a,a) ∈ R, because a is in the same subset as itself. 
 Symmetry: If (a,b) ∈ R, then b and a are in the same subset of the partition, so 

(b,a) ∈ R. 
 Transitivity: If (a,b) ∈ R and  (b,c) ∈ R, then a and b are in the same subset of 

the partition, as are b and c. Since the subsets are disjoint and b belongs to 
both, the  two subsets of the partition must be identical. Therefore, (a,c) ∈ R
since a and c belong to the same subset of the partition. 
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Partial Orderings
Definition 1: A relation R on a set S is called a partial 
ordering, or partial order, if it is reflexive, 
antisymmetric, and transitive. A set together with a 
partial ordering R is called a partially ordered set, or 
poset, and is denoted by (S, R). Members of S are 
called elements of the poset. 



Partial Orderings (continued)
Example 1: Show that the “greater than or equal” 
relation (≥) is a partial ordering on the set of integers.

 Reflexivity:  a ≥ a for every integer a.

 Antisymmetry: If a ≥ b and b ≥ a , then a = b.

 Transitivity: If a ≥ b and b ≥ c , then a ≥ c.

These properties all follow from the order axioms for the integers. 
(See Appendix 1).



Partial Orderings (continued)
Example 2: Show that the divisibility relation (∣) is a 
partial ordering on the set of integers.
 Reflexivity: a ∣ a for all integers a. (see Example 9 in 

Section 9.1) 

 Antisymmetry: If a and b are positive integers with a | b
and b | a, then a = b. (see Example 12 in Section 9.1)

 Transitivity: Suppose that a divides b and b divides c. 
Then there are positive integers k and l such that b = ak
and c = bl. Hence, c = a(kl), so a divides c. Therefore, the 
relation is transitive. 

 (Z+, ∣) is a poset.



Partial Orderings (continued)
Example 3: Show that the inclusion relation (⊆) is a 
partial ordering on the power set of a set S.

 Reflexivity: A ⊆ A whenever A is a subset of S. 

 Antisymmetry: If A and B are positive integers with        
A ⊆ B and B ⊆ A, then A = B.

 Transitivity: If A ⊆ B and B ⊆ C, then A ⊆ C.

The properties all follow from the 
definition of set inclusion.



Comparability
Definition 2: The elements a and b of a poset (S,≼ ) are comparable if 
either a ≼ b or b ≼ a. When a and b are elements of S so that  neither          
a ≼ b nor b ≼ a, then a and b are called incomparable.

Definition 3: If  (S,≼ ) is a poset and every two elements of S are 
comparable, S is called a totally ordered or linearly ordered set, and ≼ is 
called a total order or a linear order.  A totally ordered set is also called a 
chain. 
Definition 4: (S,≼ ) is a well-ordered set if it is a poset such that ≼ is a 
total ordering and every nonempty subset of S has a least element. 

The symbol ≼ is used to denote the relation in any 
poset. 



Lexicographic Order
Definition: Given two posets (A1,≼1) and (A2,≼2), the lexicographic 
ordering on A1 ⨉ A2 is defined by specifying that  (a1, a2) is less than 
(b1,b2), that is,

(a1, a2) ≺ (b1,b2), 
either if a1 ≺1 b1 or if a1 = b1 and a2 ≺2 b2.

 This definition can be easily extended to a lexicographic ordering on 
strings (see text).
Example:  Consider strings of lowercase English letters. A 
lexicographic ordering can be defined using the ordering of the letters 
in the alphabet. This is the same ordering as that used in dictionaries.
 discreet ≺ discrete, because these strings differ in the seventh position 

and e ≺ t. 
 discreet ≺ discreetness, because the first eight letters agree, but the 

second string is longer. 



Hasse Diagrams
Definition: A Hasse diagram is a visual representation of a 
partial ordering that leaves out edges that must be present 
because of the reflexive and transitive properties.

A partial ordering is shown in (a) of the figure above. The 
loops due to the reflexive property are deleted in (b). The 
edges that must be present due to the transitive property 
are deleted in (c). The Hasse diagram for the partial 
ordering (a), is depicted in (c). 



Procedure for Constructing a   
Hasse Diagram
 To represent a finite poset (S,≼ )  using a Hasse

diagram, start with the directed graph of the relation:

 Remove the loops (a, a) present at every vertex due to 
the reflexive property.

 Remove all edges (x, y) for which there is an element       
z ∈ S such that x ≺ z and z ≺ y. These are the edges that 
must be present due to the transitive property.

 Arrange each edge so that its initial vertex is below the 
terminal vertex. Remove all the arrows, because all edges 
point upwards toward their terminal vertex. 


